Rapid Solidification of Al-Cu, Al-Fe and Ni-Al particles under diffusionlimited conditions

Hani Henein

Advanced Materials and Processing Laboratory

University of Alberta

Edmonton, Alberta, CANADA

hani.henein@ualberta.ca

CSA Workshop on Suborbital Platforms and Nanosatellites April 14-16, 2010

- Apparatus/Infrastruccture/Payloads
- Why research in space?
- Drop tube system
- On-line instrumentation
- Powder characterization
- EML on parabolic flights and sub-orbital rocket.
- Undercooling of primary phase and 2nd phase of eutectic
- The future?

Objectives of the Project

Solidification

Industry Casting

Microgravity Convection control

Undercooling Novel Materials

More than 90% of materials are produced from the liquid as their parent phase

The conditions of solidification control the quality of the as cast material

Large number of degrees of freedom leads to a broad spectrum of materials classes.

Objectives of the Project

Why Undercooling?

Great Variety of Metastable Solids from Undercooled Melts

D. Herlach, 2007

Objectives of the Project

To formulate an understanding of the relationship between undercooling and microstructure.

We must be able to vary many parameters, such as:

- Container or containerless solidification
- Liquid temperature
- Gas atmosphere
- Alloy system

Drop tube-Impulse System: description

MPL

D. Yuan et al, 1997

Three atomization towers

Drop tube-Impulse System: description

Common Utilities and diagnostics

• 20 kW induction furnace

• Oxygen analysis

<u>Tower 1:</u>

- Controlled atmosphere to ~100 ppm.
- Melt capacity of 1 litre
- Atomizing chamber is 0.5m D x 4m H
- Equiped for conducting high pressure gas atomization
- Equiped for carrying out spray forming of ingots

Tower 2:

- Controlled atmosphere to ~2000 ppm.
- Melt capacity of 10 litre
- Atomizing chamber is 1.5m D x 5m H
- Equiped for conducting high pressure gas atomization and low pressure (high flowrate) air atomization
- Equiped for carrying out spray forming of strip 5cm W x 1m L

Tower 3:

- Controlled atmosphere to ~100 ppm and vacuum operation.
- Melt capacity of 1 litre
- Atomizing chanber is 0.5m W x 2m T x 2m H

on-line Instrumentation

DVP 2000: for in-situ measurement of droplet velocity and temperature

IA Instrumentation

1000.00

Powder Characterization

SEM image of unsieved Copper powder produced by IAP at 1200°C using Nozzle B (run # 060793). Atmosphere 10ppm O₂ in N₂.

Micro-tomography of 500 μ m Al-0.6 Fe atomized in N₂ showing eutectic and porosity.

powder characterization methods:

•SEM •TEM

- •Neutron diffraction
- X-Ray micro-tomography

Dr. Ke Han, E Los Alamos National Labs

FESEM Image of 700 µm Al-24Cu Atomized in He

EML Apparatus

DLR Germany

9 international projects

Each with an international team of 4 to 6 researchers from different countries

- **O** Bulk samples: 5 mm 1 cm
- **O** T-range 1000 K < T < 2500 K
- **O** Investigations of:
 - Solidification
 - Thermophysics
- Limitations on Earth:
 - Temperature range
 - Environment
 - El.-magn. stirring
 - Deformation of sample shape

Pumping systems

TEMPUS: DARA/DLR EML for ISS: DLR/ESA

Successfully tested in Space: NASA Spacelab Missions: IML-2 (1994) MSL 1 (1997) MSL 1R (1997)

Ni-Al sample in its sample cage prior to insertion into the levitation field.

TEXUS 44 carrying EML launched February 2008 Al-Ni alloy

- Composition dependence of dendrite velocity
- Velocity increases with undercooling

Dendrite growth velocity as a function of undercooling measured on intermetallic $Ni_{50}AI_{50}$ alloy both under terrestrial conditions (open circles) and in reduced gravity (closed circles).

Reutzel, Hartmann, Galenko, Schneider, Herlach, 2007

ESA PFC January 2008 AI-Fe alloy

NEQUISOL Participants

D.M. Herlach

Ruhr-University Bochum, Faculty of Physics and Astronomie, Institute of Materials Physics in Space, DLR, *Germany*

Ch.-A. Gandin

Ecole Nationale Supérieure des Mines de Paris (ENSMP) Centre de Mise en Forme des Matériaux (CEMEF) *France*

A. Garcia-Escorial (NEQUISOL II)

Dept. Metalurgia Física, CENIM-CSIC Spain

H. Henein

University of Alberta *Canada*

U.Fritshing and V. Uhlenwinkle (NEQUISOL III)

University of Bremen Germany

Studies using EML

CCEMLCC COOLCOP MAGNEPHAS METCOMP MULTIPHAS NEQUISOL RESISTIVITY SEMITHERM THERMOLAB

Countries participating:

Austria Canada Denmark France Germany Japan Netherland Russia Spain

Areas of research:

- •Electrical resistivity measurements of melts,
- •Non-equilibrium solidification of melts,
- •Thermophysical property measurements of melts.

Systems under study:

AlCu
AlFe
CuCo
MMC in NiTa
NbNi
NiAl
Steel alloys
ZrNi

AI-8.0Fe (Al₉₆Fe₄) Terrestrial and PFC Experiments

Figure 6 shows the Temperature-Time profiles (cooling part) of Terrestrial, PFC, and the corresponding SEM images.

IA Drop Tube Experiments

Undercooling of PFC, Terrestrial and Impulse Atomized Samples for AI-Fe System

	PFC		Terrestrial		A	
Composition	Phase	∆ T (C)	Phase	∆ T (C)	Phase	Δ Τ (C)
	AI ₁₃ Fe ₄ twinning	75	AI ₁₃ Fe ₄ twinning	116	Al _m Fe	-
Al-8wt%Fe*	α-Al	-	α-Al	-	Al ₁₃ Fe ₄	-
	Eutectic	21	Eutectic	23	α-ΑΙ	-
	Al ₁₃ ⊦e₄/α- Al		Al ₁₃ ⊦e₄/α- Al		Eutectic Al ₁₃ Fe ₄ /α-Al	-
	-		TBD	0	α-ΑΙ	-
AI- 1.90wt%Fe**			Eutectic TBD	27	Eutectic Al _m Fe/α-Al	17
	-		TBD	40	α-ΑΙ	-
Al- 0.61wt%Fe***			Eutectic TBD	21	Eutectic Al _m Fe/α-Al	10

The future?

EML-ISS planned for 2011 or 2012

AO-99-023

- Batches 1 and 2 NiAl and AlCu samples.
- Batches 3 and 4 NiAl, Tool Steel (Fe-Cr-C) and Al-Si samples.

Preparation for Batches 3 and 4 is needed using PFC's and Sub-orbital rocket.

Strategic Project under the Canada-France: AI-Cu, AI-Mg

Ecole des Mines de Paris Universite d'Aix de Marseille University of Alberta Novelis Global Technologies Inc.

Questions?

Weight percent eutectic as a function of alloy composition. Values calculated from from measurements of weight percent CuAl₂ using Neutron Diffraction and volume percent eutectic using Stereology from SEM images.

Solidification path of Al-Cu droplets

General Work Plan for the Project Participants

General Work Plan for the Project Participants

Impulse System: Sample spray Cu, 1200°C, 37 orifices

Impulse System: Materials Atomized

Alloy d50 Range (µm)	Alloy d50 Range (μm)		
Al Alloys	Lead		
Al 310 & 2, 4, 6, 8, 10 mm Al - 4.5Cu 250 - 550 Al - 10Cu 250 - 550 Al - 17Cu 250 - 550 Al - 22Cu 250 - 550 Al - 42Cu unsized AA 6061, 6111 250 - 850 Al 357 560 - 700 Al-10Sr & Al-24Sr 1000	Pb-10%Sn 200-1000 Pb-12%Sn 130 Mg Alloys Mg 2 to 4 mm Mg - 9Al - 1Zn 850 - 1000 Mg - 9Al - 1Zr 850		
Al-Al ₂ O ₃ 1000 (5, 10 and 20 vol% of 35 μm Al ₂ O ₃)	Nd Alloys NdFeB 1000		
Cu Alloys	Ni Alloys		
Cu500 - 1400Bronze180 - 720Cu-5Agunsized	Ni-10%Al 350		

MPL

Impulse System

Alloy d	50 Range (µm)				
Steels					
1040, H13, 4140, 304SS	350 - 1500				
Titanium					
Ti34Cu45Zr11Ni8	350				
Zinc					
Zn – 500 ppm Pb	250				
Zn	150				
Zn alkaline	100 and 150				
battery powder					

 $1.3 \leq d84/d50 \leq 1.5$

0.063 kg/s pilot scale unit operated for 2.5 hrs.

Mass flux is ~7300 kg/s m^2

Impulse System: description

Instrumentation:

- Oxygen analysis
- Melt temperature
- Load cell for powder production rate measurement
- Applied impulse frequency and amplitude
- Applied force to the melt
- High speed single frame imaging
- Shadowgraph system for in-flight measurement of droplet size and velocity
- Two colour pyrometer for in-flight measurement of droplet temperature
- Video imaging of the spray

